
Symbol - a name that represents a value  
or object stored in R. is_symbol(expr(pi)) 

Environment - a list-like object that binds 
symbols (names) to objects stored in memory.  
Each env contains a link to a second, parent  
env, which creates a chain, or search path, of 
environments. is_environment(current_env()) 

Constant - a bare value (i.e. an atomic  
vector of length 1). is_bare_atomic(1) 

Call object - a vector of symbols/constants/calls  
that begins with a function name, possibly 
followed by arguments. is_call(expr(abs(1))) 

Code - a sequence of symbols/constants/calls 
that will return a result if evaluated. Code can be: 

1. Evaluated immediately     (Standard Eval) 
2. Quoted to use later   (Non-Standard Eval) 
is_expression(expr(pi)) 

Expression - an object that stores quoted code 
without evaluating it. is_expression(expr(a + b)) 

Quosure- an object that stores both quoted  
code (without evaluating it) and the code's 
environment. is_quosure(quo(a + b)) 

Expression Vector - a list of pieces of quoted 
code created by base R's expression and parse 
functions. Not to be confused with expression.

rlang::quo_get_env(quo) Return  
the environment of a quosure. 

rlang::quo_set_env(quo, expr) 
Set  the environment of a quosure. 

rlang::quo_get_expr(quo) Return 
the expression of a quosure.

RStudio® is a trademark of RStudio, Inc.  •  CC BY SA RStudio •  info@rstudio.com  •  844-448-1212 • rstudio.com •  Learn more at tidyeval.tidyverse.org •  rlang 0.3.0 •   Updated: 2018-11

Tidy evaluation with rlang : : CHEAT SHEET 

3.14
pi code

result

1

abs ( )1

a + b

ba

Quoting Code                       

Parsing and Deparsing

QUOSURES EXPRESSION
Quosure- An expression that has 
been saved with an environment 
(aka a closure).  
A quosure can be evaluated later  
in the stored environment to  
return a predictable result.

a + b,
q

a
b

when  
evaluated

a + b
3

b
a

Quoted Expression - An expression 
that has been saved by itself.  
A quoted expression can be  evaluated 
later to return a result that will depend 
on the environment it is evaluated ina + b

e when  
evaluated

a + b
?

?

rlang::quo(expr) Quote contents as a quosure. Also quos to quote 
multiple expressions. a <- 1; b <- 2; q <- quo(a + b); qs <- quos(a, b) 

rlang::enquo(arg) Call from within a function to quote what the user 
passed to an argument as a quosure. Also enquos for multiple args. 
quote_this < - function(x) enquo(x) 
quote_these < - function(…) enquos(…) 

rlang::new_quosure(expr, env = caller_env()) Build a  
quosure from a quoted expression and an environment. 
new_quosure(expr(a + b), current_env())

rlang::expr(expr) Quote contents. Also exprs to quote multiple 
expressions. a <- 1; b <- 2; e <- expr(a + b); es <- exprs(a, b, a + b) 

rlang::enexpr(arg) Call from within a function to quote what the user 
passed to an argument. Also enexprs to quote multiple arguments.  
quote_that < - function(x) enexpr(x) 
quote_those < - function(…) enexprs(…) 

rlang::ensym(x) Call from within a function to quote what the user 
passed to an argument as a symbol, accepts strings. Also ensyms.  
quote_name < - function(name) ensym(name) 
quote_names < - function(…) ensyms(…)

a + b,
q

a b

a + b
e

Tidy Evaluation (Tidy Eval) is not a package, but a framework 
for doing non-standard evaluation (i.e. delayed evaluation) that 
makes it easier to program with tidyverse functions.

To evaluate an expression, R : 
1.Looks up the symbols in the expression in 

the active environment (or a supplied one), 
followed by the environment's parents 

2.Executes the calls in the expression 

The result of an expression depends on  
which environment it is evaluated in.

ba

rlang::parse_expr(x) Convert  
a string  to an expression. Also 
parse_exprs, sym, parse_quo, 
parse_quos. e<-parse_expr("a+b")

a + b
e"a + b" "a + b"

Parse - Convert a string 
to a saved expression. 

Deparse - Convert a saved 
expression to a string. 

rlang::expr_text(expr, width = 
60L, nlines = Inf) Convert expr 
to a string. Also quo_name. 
expr_text(e) 

b
a 1

2

a 1

b
+ fun

2

a + b
3

fun(1, 2)

Evaluation

rlang::eval_tidy(expr, data = NULL, 
env = caller_env()) Evaluate expr in 
env, using data as a data mask. 
Will evaluate quosures in their 
stored environment. eval_tidy(q) 

Data Mask - If data is non-NULL, 
eval_tidy inserts data into the 
search path before env, matching 
symbols to names in data. 

Use the pronoun .data$ to force a 
symbol to be matched in data, and  
!! (see back) to force a symbol to 
be matched in the environments.

a + b

b+

a

a <- 1; b <- 2 
p <- quo(.data$a + !!b) 
mask <- tibble(a = 5, b = 6)  
eval_tidy(p, data = mask)

QUOTED EXPRESSION QUOSURES (and quoted exprs)

rlang::caller_env(n = 1) Returns 
calling env of the function it is in.   

rlang::child_env(.parent, ...) Creates 
new env as child of .parent. Also env. 

rlang::current_env() Returns 
execution env of the function it is in.

pi

a + b
e

3
a + b

Quote code in one of two ways (if in doubt use a quosure): 

parse deparse

rlang::eval_bare(expr, env = 
parent.frame()) Evaluate expr in 
env. eval_bare(e, env =.GlobalEnv)

Building Calls
rlang::call2(.fn, ..., .ns = NULL) Create a call from a function and a list 
of args. Use exec to create and then evaluate the call. (See back page 
for !!!) args <- list(x = 4, base = 2)

call2("log", x = 4, base = 2) 
call2("log", !!!args) 

exec("log", x = 4, base = 2) 
exec("log", !!!args)

, base =4log (x = )2

2

Vocabulary

https://creativecommons.org/licenses/by-sa/4.0/
mailto:info@rstudio.com
http://rstudio.com
https://tidyeval.tidyverse.org


PASS CRAN CHECK

Quoted arguments in tidyverse functions 
can trigger an R CMD check NOTE about 
undefined global variables. To avoid this: 

1. Import rlang::.data to your package,  
perhaps with the roxygen2 tag 
@importFrom rlang .data 

2. Use the .data$ pronoun in front of 
variable names in tidyverse functions

APPLY AN ARGUMENT TO A DATA FRAME

subset2 <- function(df, rows) { 
    rows <- rlang::enquo(rows) 
    vals <- rlang::eval_tidy(rows, data = df) 
    df[vals, , drop = FALSE] 
}

1

2

1. Capture user argument  
with rlang::enquo. 

2. Evaluate the argument with 
rlang::eval_tidy. Pass the data 
frame to data to use as a data mask. 

3. Suggest in your documentation 
that your users use the .data 
and .env pronouns.

RStudio® is a trademark of RStudio, Inc.  •  CC BY SA RStudio •  info@rstudio.com  •  844-448-1212 • rstudio.com •  Learn more at tidyeval.tidyverse.org •  rlang 0.3.0 •   Updated: 2018-11

Quasiquotation (!!, !!!, :=)

Quoting some parts of an 
expression while evaluating 
and then inserting the results 
of others (unquoting others). 
e <- expr(a + b)

rlang provides !!, !!!, and := for doing quasiquotation. 

!!, !!!, and := are not functions but syntax (symbols recognized 
by the functions they are passed to). Compare this to how  

. is used by magrittr::%>%() 

. is used by stats::lm() 

.x is used by purrr::map(), and so on. 

!!, !!!, and := are only recognized by some rlang functions and 
functions that use those functions (such as tidyverse functions).

QUOTATION QUASIQUOTATION

( ) log(a + b)
fun
log a + b

e
( ) log(e)

fun
log

a + b
e

Storing an expression 
without evaluating it. 
e <- expr(a + b)

!!   Unquotes the 
symbol or call that 
follows. Pronounced 
"unquote" or "bang-
bang." a <- 1; b <- 2 
expr(log(!!a + b)) 

Combine !! with ()  
to unquote a longer 
expression.  
a <- 1; b <- 2 
expr(log(!!(a + b))) 

!!!   Unquotes a vector 
or list and splices the 
results as arguments 
into the surrounding 
call. Pronounced 
"unquote splice" or 
"bang-bang-bang." 
x <- list(8, b = 2)  
expr(log(!!!x)) 

:=   Replaces an = to 
allow unquoting within 
the name that appears 
on the left hand side of 
the =. Use with !! 
n <- expr(uno) 
tibble::tibble(!!n := 1)

expr(log(!!a + b))

1
a

fun
+

2
b( )

fun
log log(1 + b)

!!

expr(log(!!(a + b)))

3
a + b

( )
fun
log log(3)

!!

expr(log(!!!x))

8, b = 2
x

( )
fun
log log(8, b=2)

!!!

tibble::tibble(!!n := 1)

uno
n

1
1 uno = 1:=

!!

Programming Recipes

PROGRAM WITH A QUOTING FUNCTION

WRITE A 
FUNCTION  
THAT RECOGNIZES  
QUASIQUOTATION 
(!!,!!!,:=)

Quoting function- A function that quotes any of  its arguments internally  for delayed evaluation 
in a chosen environment. You must take special steps to program safely with a quoting function.

PASS MULTIPLE ARGUMENTS  
TO A QUOTING FUNCTION

PASS TO ARGUMENT NAMES  
OF A QUOTING FUNCTION

MODIFY USER ARGUMENTS 

Many tidyverse functions are quoting 
functions: e.g. filter, select, mutate, 
summarise, etc.

How to spot a quoting function?  
A function quotes an argument if the 
argument returns an error when run 
on its own.

  speed dist
1    25   85

dplyr::filter(cars, speed = = 25)

Error!
speed == 25

my_do <- function(f, v, df) { 
    f <- rlang::enquo(f) 
    v <- rlang::enquo(v) 
    todo <- rlang::quo((!!f)(!!v)) 
    rlang::eval_tidy(todo, df) 
}

1

2
3

1. Capture user arguments  
with rlang::enquo. 

2. Unquote user arguments into a 
new expression or quosure to use 

3. Evaluate the new expression/
quosure instead of the original 
argument

data_mean <- function(data, var) { 
    require(dplyr) 
    var <- rlang::enquo(var) 
    data %>% 
        summarise(mean = mean(!!var)) 
}

1

2

1. Capture user argument that will 
be quoted with rlang::enquo. 

2. Unquote the user argument into 
the quoting function with !!.

group_mean <- function(data, var, …) { 
    require(dplyr) 
    var <- rlang::enquo(var) 
    group_vars <- rlang::enquos(…) 
    data %>% 
         group_by(!!!group_vars) %>% 
        summarise(mean = mean(!!var)) 
}

1

2

1. Capture user arguments that will 
be quoted with rlang::enquos. 

2. Unquote splice the user arguments 
into the quoting function with !!!.

named_mean <- function(data, var) { 
    require(dplyr) 
    var <- rlang::ensym(var) 
   data %>% 
       summarise(!!name := mean(!!var)) 
}

1

2

1. Capture user argument that will 
be quoted with rlang::ensym. 

2. Unquote the name into the 
quoting function with !! and :=.

expr(log(e)) expr(log(!!e))

add1 <- function(x) { 
    q <- rlang::enquo(x) 
    rlang::eval_tidy(q) + 1 
}

1
2

1. Capture the  
quasiquotation-aware  
argument with rlang::enquo. 

2. Evaluate the arg with rlang::eval_tidy.

#' @importFrom rlang .data 
mutate_y <- function(df) { 
   dplyr::mutate(df, y = .data$a +1) 
}

1

2

https://creativecommons.org/licenses/by-sa/4.0/
mailto:info@rstudio.com
http://rstudio.com
https://tidyeval.tidyverse.org

