Chapter 22 Bayesian data analysis

22.1 Learning goals

  • Doing Bayesian inference “by hand”
  • Understanding the effect that prior, likelihood, and sample size have on the posterior.
  • Doing Bayesian data analysis with greta
    • A simple linear regression.

22.2 Load packages and set plotting theme

library("knitr")      # for knitting RMarkdown
library("janitor")    # for cleaning column names
library("patchwork")  # for figure panels
library("tidybayes")  # tidying up results from Bayesian models
library("greta")      # for writing Bayesian models
library("gganimate")  # for animations
library("extraDistr") # additional probability distributions
library("broom")      # for tidy regression results
library("tidyverse")  # for wrangling, plotting, etc. 
theme_set(theme_classic() + #set the theme 
    theme(text = element_text(size = 20))) #set the default text size

opts_chunk$set(comment = "",
               fig.show = "hold")

22.3 Doing Bayesian inference “by hand”

22.3.1 Sequential updating based on the Beta distribution

# data 
data = c(0, 1, 1, 0, 1, 1, 1, 1)

# whether observation is a success or failure 
success = c(0, cumsum(data)) 
failure = c(0, cumsum(1 - data))
# I've added 0 at the beginning to show the prior

# plotting function
fun.plot_beta = function(success, failure){
  ggplot(data = tibble(x = c(0, 1)),
         mapping = aes(x = x)) +
    stat_function(fun = "dbeta",
                  args = list(shape1 = success + 1, shape2 = failure + 1),
                  geom = "area",
                  color = "black",
                  fill = "lightblue") +
    coord_cartesian(expand = F) +
    scale_x_continuous(breaks = seq(0.25, 0.75, 0.25)) + 
    theme(axis.title = element_blank(),
          axis.text.y = element_blank(),
          axis.ticks.y = element_blank(),
          plot.margin = margin(r = 1, t = 0.5, unit = "cm"))
}

# generate the plots 
plots = map2(success, failure, ~ fun.plot_beta(.x, .y))

# make a grid of plots
wrap_plots(plots, ncol = 3)

22.3.2 Coin flip example

Is the coin biased?

# data 
data = rep(0:1, c(8, 2))

# parameters 
theta = c(0.1, 0.5, 0.9)

# prior 
prior = c(0.25, 0.5, 0.25)
# prior = c(0.1, 0.1, 0.8) # alternative setting of the prior
# prior = c(0.000001, 0.000001, 0.999998) # another prior setting 

# likelihood 
likelihood = dbinom(sum(data == 1), size = length(data), prob = theta)

# posterior 
posterior = likelihood * prior / sum(likelihood * prior)

# store in data frame 
df.coins = tibble(theta = theta,
                  prior = prior,
                  likelihood = likelihood,
                  posterior = posterior) 

Visualize the results:

df.coins %>% 
  pivot_longer(cols = -theta,
               names_to = "index",
               values_to = "value") %>% 
  mutate(index = factor(index, levels = c("prior", "likelihood", "posterior")),
         theta = factor(theta, labels = c("p = 0.1", "p = 0.5", "p = 0.9"))) %>% 
  ggplot(data = .,
         mapping = aes(x = theta,
                       y = value,
                       fill = index)) + 
  geom_bar(stat = "identity",
           color = "black") +
  facet_grid(rows = vars(index),
             switch = "y",
             scales = "free") + 
  annotate("segment", x = -Inf, xend = Inf, y = -Inf, yend = -Inf) + 
  annotate("segment", x = -Inf, xend = -Inf, y = -Inf, yend = Inf) + 
  theme(legend.position = "none",
        strip.background = element_blank(),
        axis.title.y = element_blank(),
        axis.text.y = element_blank(),
        axis.ticks.y = element_blank(),
        axis.title.x = element_blank(),
        axis.line = element_blank())

22.3.3 Bayesian inference by discretization

22.3.3.1 Effect of the prior

# grid
theta = seq(0, 1, 0.01)

# data
data = rep(0:1, c(8, 2))

# calculate posterior
df.prior_effect = tibble(theta = theta, 
                  prior_uniform = dbeta(theta, shape1 = 1, shape2 = 1),
                  prior_normal = dbeta(theta, shape1 = 5, shape2 = 5),
                  prior_biased = dbeta(theta, shape1 = 8, shape2 = 2)) %>% 
  pivot_longer(cols = -theta,
               names_to = "prior_index",
               values_to = "prior") %>% 
  mutate(likelihood = dbinom(sum(data == 1),
                             size = length(data),
                             prob = theta)) %>% 
  group_by(prior_index) %>% 
  mutate(posterior = likelihood * prior / sum(likelihood * prior)) %>% 
  ungroup() %>% 
  pivot_longer(cols = -c(theta, prior_index),
               names_to = "index",
               values_to = "value")

# make the plot
df.prior_effect %>% 
  mutate(index = factor(index, levels = c("prior", "likelihood", "posterior")),
         prior_index = factor(prior_index,
                              levels = c("prior_uniform", "prior_normal", "prior_biased"),
                              labels = c("uniform", "symmetric", "asymmetric"))) %>% 
  ggplot(data = .,
         mapping = aes(x = theta,
                       y = value,
                       color = index)) +
  geom_line(size = 1) + 
  facet_grid(cols = vars(prior_index),
             rows = vars(index),
             scales = "free",
             switch = "y") +
  scale_x_continuous(breaks = seq(0, 1, 0.2)) +
  annotate("segment", x = -Inf, xend = Inf, y = -Inf, yend = -Inf) + 
  annotate("segment", x = -Inf, xend = -Inf, y = -Inf, yend = Inf) + 
  theme(legend.position = "none",
        strip.background = element_blank(),
        axis.title.y = element_blank(),
        axis.text.y = element_blank(),
        axis.ticks.y = element_blank(),
        axis.text.x = element_text(size = 10),
        axis.line = element_blank())
Illustration of how the prior affects the posterior.

Figure 2.6: Illustration of how the prior affects the posterior.

22.3.3.2 Effect of the likelihood

# grid
theta = seq(0, 1, 0.01)

df.likelihood_effect = tibble(theta = theta, 
                              prior = dbeta(theta, shape1 = 2, shape2 = 8),
                              likelihood_left = dbeta(theta, shape1 = 1, shape2 = 9),
                              likelihood_center = dbeta(theta, shape1 = 5, shape2 = 5),
                              likelihood_right = dbeta(theta, shape1 = 9, shape2 = 1)) %>% 
  pivot_longer(cols = -c(theta, prior),
               names_to = "likelihood_index",
               values_to = "likelihood") %>% 
  group_by(likelihood_index) %>% 
  mutate(posterior = likelihood * prior / sum(likelihood * prior)) %>% 
  ungroup() %>% 
  pivot_longer(cols = -c(theta, likelihood_index),
               names_to = "index",
               values_to = "value")

df.likelihood_effect %>% 
  mutate(index = factor(index, levels = c("prior", "likelihood", "posterior")),
         likelihood_index = factor(likelihood_index,
                                   levels = c("likelihood_left",
                                              "likelihood_center",
                                              "likelihood_right"),
                                   labels = c("left", "center", "right"))) %>% 
  ggplot(data = .,
         mapping = aes(x = theta,
                       y = value,
                       color = index)) +
  geom_line(size = 1) + 
  facet_grid(cols = vars(likelihood_index),
             rows = vars(index),
             scales = "free",
             switch = "y") +
  scale_x_continuous(breaks = seq(0, 1, 0.2)) +
  annotate("segment", x = -Inf, xend = Inf, y = -Inf, yend = -Inf) + 
  annotate("segment", x = -Inf, xend = -Inf, y = -Inf, yend = Inf) + 
  theme(legend.position = "none",
        strip.background = element_blank(),
        axis.title.y = element_blank(),
        axis.text.y = element_blank(),
        axis.ticks.y = element_blank(),
        axis.text.x = element_text(size = 10),
        axis.line = element_blank(),
        strip.text.x = element_blank())
Illustration of how the likelihood of the data affects the posterior.

Figure 2.7: Illustration of how the likelihood of the data affects the posterior.

22.3.3.3 Effect of the sample size

# grid
theta = seq(0, 1, 0.01)

df.sample_size_effect = tibble(theta = theta, 
                               prior = dbeta(theta, shape1 = 5, shape2 = 5),
                               likelihood_low = dbeta(theta, shape1 = 2, shape2 = 8),
                               likelihood_medium = dbeta(theta,
                                                         shape1 = 10,
                                                         shape2 = 40),
                               likelihood_high = dbeta(theta,
                                                       shape1 = 20,
                                                       shape2 = 80)) %>% 
  pivot_longer(cols = -c(theta, prior),
               names_to = "likelihood_index",
               values_to = "likelihood") %>% 
  group_by(likelihood_index) %>% 
  mutate(posterior = likelihood * prior / sum(likelihood * prior)) %>% 
  ungroup() %>% 
  pivot_longer(cols = -c(theta, likelihood_index),
               names_to = "index",
               values_to = "value")

df.sample_size_effect %>% 
  mutate(index = factor(index, levels = c("prior", "likelihood", "posterior")),
         likelihood_index = factor(likelihood_index,
                                   levels = c("likelihood_low",
                                              "likelihood_medium",
                                              "likelihood_high"),
                                   labels = c("n = low", "n = medium", "n = high"))) %>% 
  ggplot(data = .,
         mapping = aes(x = theta,
                       y = value,
                       color = index)) +
  geom_line(size = 1) + 
  facet_grid(cols = vars(likelihood_index),
             rows = vars(index),
             scales = "free",
             switch = "y") +
  scale_x_continuous(breaks = seq(0, 1, 0.2)) +
  annotate("segment", x = -Inf, xend = Inf, y = -Inf, yend = -Inf) + 
  annotate("segment", x = -Inf, xend = -Inf, y = -Inf, yend = Inf) + 
  theme(legend.position = "none",
        strip.background = element_blank(),
        axis.title.y = element_blank(),
        axis.text.y = element_blank(),
        axis.ticks.y = element_blank(),
        axis.text.x = element_text(size = 10),
        axis.line = element_blank())

22.4 Doing Bayesian inference with Greta

You can find out more about how get started with “greta” here: https://greta-stats.org/articles/get_started.html. Make sure to install the development version of “greta” (as shown in the “install-packages” code chunk above: devtools::install_github("greta-dev/greta")).

22.4.1 Attitude data set

# load the attitude data set 
df.attitude = attitude

Visualize relationship between how well complaints are handled and the overall rating of an employee

ggplot(data = df.attitude,
       mapping = aes(x = complaints,
                     y = rating)) +
  geom_point()

22.4.2 Frequentist analysis

# fit model 
fit.lm = lm(formula = rating ~ 1 + complaints, 
            data = df.attitude)

# print summary
fit.lm %>% 
  summary()

Call:
lm(formula = rating ~ 1 + complaints, data = df.attitude)

Residuals:
     Min       1Q   Median       3Q      Max 
-12.8799  -5.9905   0.1783   6.2978   9.6294 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 14.37632    6.61999   2.172   0.0385 *  
complaints   0.75461    0.09753   7.737 1.99e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.993 on 28 degrees of freedom
Multiple R-squared:  0.6813,    Adjusted R-squared:  0.6699 
F-statistic: 59.86 on 1 and 28 DF,  p-value: 1.988e-08

Visualize the model’s predictions

ggplot(data = df.attitude,
       mapping = aes(x = complaints,
                     y = rating)) +
  geom_smooth(method = "lm",
              formula = "y ~ x", 
              color = "black") + 
  geom_point()

22.4.3 Bayesian regression

22.4.3.1 Fit the model

set.seed(1)

# variables & priors
b0 = normal(0, 10)

ℹ Initialising python and checking dependencies, this may take a moment.

✔ Initialising python and checking dependencies ... done!
b1 = normal(0, 10)
sd = cauchy(0, 3, truncation = c(0, Inf))

# linear predictor
mu = b0 + b1 * df.attitude$complaints

# observation model (likelihood)
distribution(df.attitude$rating) = normal(mu, sd)

# define the model
m = model(b0, b1, sd)

Visualize the model as graph:

# plotting
plot(m)

Draw samples from the posterior distribution:

set.seed(1)

# sampling
draws = mcmc(m, n_samples = 1000)
# tidy up the draws
df.draws = tidy_draws(draws) %>% 
  clean_names()

22.4.3.2 Visualize the priors

These are the priors I used for the intercept, regression weights, and the standard deviation of the Gaussian likelihood function:

# Gaussian
ggplot(tibble(x = c(-30, 30)),
       aes(x = x)) +
  stat_function(fun = "dnorm", 
                size = 2,
                args = list(sd = 10))

# Cauchy
ggplot(tibble(x = c(0, 30)),
       aes(x = x)) +
  stat_function(fun = "dcauchy", 
                size = 2,
                args = list(location = 0,
                            scale = 3))

22.4.3.3 Visualize the posteriors

This is what the posterior looks like for the three parameters in the model:

df.draws %>% 
  select(draw:sd) %>% 
  pivot_longer(cols = -draw,
               names_to = "index",
               values_to = "value") %>% 
  ggplot(data = .,
         mapping = aes(x = value)) + 
  stat_density(geom = "line") + 
  facet_grid(rows = vars(index),
             scales = "free_y",
             switch = "y") + 
  annotate("segment", x = -Inf, xend = Inf, y = -Inf, yend = -Inf) + 
  annotate("segment", x = -Inf, xend = -Inf, y = -Inf, yend = Inf) + 
  theme(legend.position = "none",
        strip.background = element_blank(),
        axis.title.y = element_blank(),
        axis.text.y = element_blank(),
        axis.ticks.y = element_blank(),
        axis.text.x = element_text(size = 10),
        axis.line = element_blank(),
        strip.text.x = element_blank())

#### Credible interval vs. confidence interval

fit.lm %>% 
  tidy(conf.int = T) %>% 
  ggplot(mapping = aes(y = term,
                       x = estimate,
                       xmin = conf.low,
                       xmax = conf.high)) +
  geom_pointrange()

22.4.3.4 Visualize model predictions

Let’s take some samples from the posterior to visualize the model predictions:

ggplot(data = df.attitude,
       mapping = aes(x = complaints, 
                     y = rating)) + 
  geom_abline(data = df.draws %>% 
                slice_sample(n = 50),
              mapping = aes(intercept = b0, 
                            slope = b1),
              alpha = 0.3,
              color = "lightblue") + 
  geom_point() 

22.4.3.5 Posterior predictive check

Let’s make an animation that illustrates what predicted data sets (based on samples from the posterior) would look like:

p = df.draws %>% 
  slice_sample(n = 10) %>%  
  mutate(complaints = list(seq(min(df.attitude$complaints),
                               max(df.attitude$complaints),
                               length.out = nrow(df.attitude)))) %>% 
  unnest(c(complaints)) %>% 
  mutate(prediction = b0 + b1 * complaints + rnorm(n(), sd = sd)) %>% 
  ggplot(aes(x = complaints, y = prediction)) + 
  geom_point(alpha = 0.8,
             color = "lightblue") +
  geom_point(data = df.attitude,
             aes(y = rating,
                 x = complaints)) +
  coord_cartesian(xlim = c(20, 100),
                  ylim = c(20, 100)) +
  transition_manual(draw)

animate(p,
        nframes = 60,
        width = 800,
        height = 600,
        res = 96,
        type = "cairo")

# anim_save("posterior_predictive.gif")

22.4.3.6 Prior predictive check

And let’s illustrate what data we would have expected to see just based on the information that we encoded in our priors.

sample_size = 10

p = tibble(b0 = rnorm(sample_size, mean = 0, sd = 10),
           b1 = rnorm(sample_size, mean = 0, sd = 10),
           sd = rhcauchy(sample_size, sigma = 3),
           draw = 1:sample_size) %>% 
  mutate(complaints = list(runif(nrow(df.attitude),
                                 min = min(df.attitude$complaints),
                                 max = max(df.attitude$complaints)))) %>% 
  unnest(c(complaints)) %>% 
  mutate(prediction = b0 + b1 * complaints + rnorm(n(), sd = sd)) %>% 
  ggplot(aes(x = complaints, y = prediction)) + 
  geom_point(alpha = 0.8,
             color = "lightblue") +
  geom_point(data = df.attitude,
             aes(y = rating,
                 x = complaints)) +
  transition_manual(draw)

animate(p,
        nframes = 60,
        width = 800,
        height = 600,
        res = 96,
        type = "cairo")

# anim_save("prior_predictive.gif")

22.5 Session info

Information about this R session including which version of R was used, and what packages were loaded.

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] forcats_0.5.1    stringr_1.4.0    dplyr_1.0.9      purrr_0.3.4     
 [5] readr_2.1.2      tidyr_1.2.0      tibble_3.1.7     tidyverse_1.3.1 
 [9] broom_0.8.0      extraDistr_1.9.1 gganimate_1.0.7  ggplot2_3.3.6   
[13] greta_0.4.2      tidybayes_3.0.2  patchwork_1.1.1  janitor_2.1.0   
[17] knitr_1.39      

loaded via a namespace (and not attached):
  [1] nlme_3.1-157         fs_1.5.2             lubridate_1.8.0     
  [4] RColorBrewer_1.1-3   progress_1.2.2       httr_1.4.3          
  [7] rprojroot_2.0.3      tensorA_0.36.2       DiagrammeRsvg_0.1   
 [10] tools_4.1.2          backports_1.4.1      bslib_0.3.1         
 [13] utf8_1.2.2           R6_2.5.1             mgcv_1.8-40         
 [16] DBI_1.1.2            colorspace_2.0-3     ggdist_3.1.1        
 [19] withr_2.5.0          tidyselect_1.1.2     prettyunits_1.1.1   
 [22] processx_3.5.3       curl_4.3.2           compiler_4.1.2      
 [25] rvest_1.0.2          cli_3.3.0            arrayhelpers_1.1-0  
 [28] xml2_1.3.3           labeling_0.4.2       bookdown_0.26       
 [31] posterior_1.2.1      sass_0.4.1           scales_1.2.0        
 [34] checkmate_2.1.0      callr_3.7.0          tfruns_1.5.0        
 [37] digest_0.6.29        rmarkdown_2.14       base64enc_0.1-3     
 [40] pkgconfig_2.0.3      htmltools_0.5.2      parallelly_1.31.1   
 [43] highr_0.9            dbplyr_2.1.1         fastmap_1.1.0       
 [46] htmlwidgets_1.5.4    rlang_1.0.2          readxl_1.4.0        
 [49] rstudioapi_0.13      visNetwork_2.1.0     jquerylib_0.1.4     
 [52] farver_2.1.0         generics_0.1.2       svUnit_1.0.6        
 [55] jsonlite_1.8.0       tensorflow_2.8.0     distributional_0.3.0
 [58] magrittr_2.0.3       Matrix_1.4-1         Rcpp_1.0.8.3        
 [61] munsell_0.5.0        fansi_1.0.3          abind_1.4-5         
 [64] reticulate_1.24      lifecycle_1.0.1      stringi_1.7.6       
 [67] whisker_0.4          yaml_2.3.5           snakecase_0.11.0    
 [70] plyr_1.8.7           grid_4.1.2           parallel_4.1.2      
 [73] listenv_0.8.0        crayon_1.5.1         lattice_0.20-45     
 [76] splines_4.1.2        haven_2.5.0          hms_1.1.1           
 [79] ps_1.7.0             pillar_1.7.0         igraph_1.3.1        
 [82] codetools_0.2-18     reprex_2.0.1         glue_1.6.2          
 [85] evaluate_0.15        V8_4.1.0             gifski_1.6.6-1      
 [88] modelr_0.1.8         png_0.1-7            vctrs_0.4.1         
 [91] tzdb_0.3.0           tweenr_1.0.2         cellranger_1.1.0    
 [94] gtable_0.3.0         future_1.25.0        assertthat_0.2.1    
 [97] xfun_0.30            coda_0.19-4          DiagrammeR_1.0.9    
[100] globals_0.14.0       ellipsis_0.3.2       here_1.0.1